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Plan


• Introduction to Regularized Least Squares


• Computation: General RLS 

• Large Data Sets: Subset of Regressors 

• Computation: Linear RLS 



Regression


We have a training set S = {(x1,y1), . . . , (xℓ,yℓ)}. The yi 

are real-valued. The goal is to learn a function f to predict 

the y values associated with new observed x values. 



Our Friend Tikhonov Regularization


We pose our regression task as the Tikhonov minimization 

problem: 

ℓ1 � λ 
�f�2 

f∈H 2 2 Kf = argmin V (f(xi), yi) + 
i=1 

To fully specify the problem, we need to choose a loss 

function V and a kernel function K. 



The Square Loss


For regression, a natural choice of loss function is the 

square loss V (f(x), y) = (f(x) − y)2. 
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Substituting In The Square Loss


Using the square loss, our problem becomes 

ℓ1 � 

�f�2f = argmin (f(xi) − yi)
2 + 

λ 
K. 

f∈H 2 2
i=1 



� 

The Return of the Representer Theorem


Theorem. The solution to the Tikhonov regularization 

problem 

ℓ1 � λ 
�f�2 

f∈H 2 2 Kmin V (yi, f(xi)) + 
i=1 

can be written in the form 

ℓ 

f = ciK(xi, ·). 
i=1 

This theorem is exceedingly useful — it says that to solve 

the Tikhonov regularization problem, we need only find the 

best function of the form f = 
�ℓ

i=1 ciK(xi). Put differently, 

all we have to do is find the ci. 



� 

� 

Applying the Representer Theorem, I


NOTATION ALERT!!! We use the symbol K for the 

kernel function, and boldface K for the ℓ-by-ℓ matrix: 

Kij ≡ K(xi, xj) 

Using this definition, consider the output of our function


ℓ 

f = ciK(xi, ·). 
i=1 

at the training point xj: 

ℓ 

f(xj) = K(xi, xj)ci 
i=1 

= (Kc)j 



� 

� � 

Using the Norm of a “Represented”


Function


A function in the RKHS with a finite representation


ℓ 

f = ciK(xi, ·), 
i=1 

satisfies 
� 

ℓ ℓ 
� 

�f�2 
k = 

� 

ciK(xi, ·), 
� 

cjK(xj, ·) 
i=1 j=1 

ℓ ℓ 
� � 

� � 

= cicj K(xi, ·), K(xj, ·) 
i=1 j=1


ℓ ℓ


= cicjK(xi, xj) 
i=1 j=1 

= c tKc. 



The RLS Problem


Substituting, our Tikhonov minimization problem becomes:


1

min c Kc.�Kc − y�2 λ T

2 + 
c∈Rℓ 2 2




Solving the Least Squares Problem, I


We are trying to minimize 

1 
g(c) =
 c Kc.
�Kc − y�2 λ T

2 + 
2 2 

This is a convex, differentiable function of c, so we can 

minimize it simply by taking the derivative with respect to 

c, then setting this derivative to 0. 

∂g(c) 
= K(Kc − y) + λKc. 

∂c 



Solving the Least Squares Problem, II


Setting the derivative to 0, 

∂g(c) 
= K(Kc − y) + λKc = 0 

∂c 
→ K(Kc) + λKc = Ky 

“ → ” Kc + λc = y 

→ (K + λI)c = y 

→ c = (K + λI)−1 y 

The matrix K + λI is positive definite and will be well-

conditioned if λ is not too small. 



Leave-One-Out Values


Recalling that S = {(x1, y1), . . . , (xℓ, yℓ)}, we define fS to 

be the solution to the RLS problem with training set S. 

We define 

Si	 = {S\xi} 

= {(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xℓ, yℓ)}, 

the training set with the ith point removed.


We call fSi(xi) the ith LOO value, and yi − fSi(xi) the ith 

LOO error. Let LOOV and LOOE be vectors whose ith 

entries are the ith LOO value and error. 

Key Intuition: if �LOOE� is small, we will generalize well.




The Leave-One-Out Formula


Remarkably, for RLS, there is a closed form formula for 

LOOE. Defining G(λ) = (K + λI)−1, we have: 

LOOE = 
G−1y 

diag(G−1) 
c 

= 
diag(G−1) 

. 

Proof: Later, Blackboard.




Computing: Naive Approach


Suppose I want to minimize �LOOE�, testing p different


values of λ.


I form K, which takes O(n2d) time (I assume d-dimensional


data and linear-time kernels throughout).


For each λ, I form G, I form G−1 (O(n3) time), and com


pute c = G−1y and diag(G−1).


Over p values of λ, I will pay O(pn3) time.


We can do much better...




Computing: Eigendecomposing K


We form the eigendecomposition K = QΛQt, where Λ is 

diagonal with Λii ≥ 0 and QQt = I. 

Key point: 

G = K + λI 

= QΛQt + λI 

= Q(Λ + λI)Qt , 

and G−1 = Q(Λ + λI)−1Qt . 

Forming the eigendecomposition takes O(n3) time (in prac

tice). 



Computing c and LOOE efficiently


c(λ) = G(λ)−1 y


= Q(Λ + λI)−1Qt y. 

G−1 
ij = (Q(Λ + λI)−1Qt)ij 

= 
n 

� QikQjk 
, 

k=1 
Λkk + λ 

Given the eigendecomposition, I can compute c, diag(G−1), 

and LOOE in O(n2) time. Over p values of λ, I pay only 

O(n3 + pn2). If p < n, searching for a good λ is effectively 

free! 



� 

Nonlinear RLS, Suggested Approach


•	 1. Form the eigendecomposition K = QΛQt . 

•	 2. For each value of λ over a logarithmically spaced 

grid, compute c = Q(Λ+λI)−1Qty and diag(G−1) using 

the formula for the last slide. Form LOOE, a vector 
ciwhose ith entry is 

diag(G−1)i 
. 

•	 3. Choose the λ that minimizes �LOOE� in some norm 

(I use L2). 

•	 4. Given that c, regress a new test point x with f(x) =


i ciK(xi, x). 



� 

Limits of RLS


RLS has proved very accurate. There are two computa

tional problems: 

•	 Training: We need O(n2) space (to store K), and 

O(n3) time (to eigendecompose K) 

•	 Testing: Testing a new point x takes O(nd) time to


compute the n kernel products in f(x) = i K(x, xi). 

Next class, we will see that an SVM has a sparse solu

tion, which gives us large constant factor (but important 

in practice!) improvements for both the training and test

ing problems. 

Can we do better, sticking with RLS?




First Idea: Throw Away Data


Suppose that we throw away all but M of our data points, 

where M << ℓ. Then we only need time M2d to form our 

new, smaller kernel matrix, and we only need time O(M3) 

to solve the problem. Great, isn’t it? 

Well, if we have too much data to begin with (say 1,000,000 

points in 3 dimensions) this will work just fine. In general, 

we will lose accuracy. 



� 

� 

Subset of Regressors


Suppose, instead of throwing away data, we restrict our 

hypothesis space further. Instead of allowing functions of 

the form 

ℓ 

f(x) = ciK(xi, x), 
i=1 

we only allow 

M 

f(x) = ciK(xi, x), 
i=1 

where M << ℓ. In other words, we only allow the first M 

points to have non-zero ci. However, we still measure the 

loss at all ℓ points. 



Subset of Regressors, Cont’d


Suppose we define KMM to be the kernel matrix on just 

the M points we’re using to represent our function, and 

KML to be the kernel product between those M points 

and the entire dataset, we can derive (homework) that the 

minimization problem becomes: 

= KMLy, (KMLKLM + λKMM)c 

which is again an M-by-M system.


Various authors have reported good results with this or 

similar, but the jury is still out (class project!). Sometimes 

called Rectangular Method. 



λ is Still Free


To solve 

= KMLy, (KMLKLM + λKMM)c 

consider a Cholesky factorization KMM = GGt: 

= KMLy(KMLKLM + λKMM)c 

→ (KMLKLM + λGGt)c = KMLy 

→ (KMLKLM + λGGt)G−tGt c = KMLy 

→ (KMLKLMG−t + λG)Gt c = KMLy 

→ G(G−1KMLKLMG−t + λI)Gt c = KMLy, 

and we use the “standard” RLS free-λ algorithm on an 

eigendecomposition of G−1KMLKLMG−t . 



Linear Kernels


An important special case is the linear kernel 

K(xi, xj) = xi · xj. 

The solution function f simplifies as: 

� 

f(x) = cixi · x 
� 

= ( cixi) · x 

≡ w t · x. 

We can evaluate f in time d rather than ℓd.


This is a general property of Tikhonov regularization with 

a linear kernel, not related to the use of the square loss. 



Linear RLS


In the linear case, K = XtX (xi is the ith column of X). 

Note that w = Xc. 

We work with an “economy-sized SVD” X = UΣV t, where 

U is d×d orthogonal, Σ is d×d diagonal spd, and V is n×d 

with orthogonal columns (V tV = I). 

w = X(XtX + λI)−1 y 

= UΣV t(V Σ2V t + λI)−1 y 

= UΣ(Σ2 + λI)−1V t y. 

We need O(nd2) time and O(nd) memory to form the SVD. 

Then we can get w(λ) in O(d2) time. Very fast. 



Linear RLS, Sparse Data


Suppose that d, the number of dimensions, is enormous, 

and that n is also large, but the data are sparse: each 

dimension has only a few non-zero entries. Example: doc

ument classification. We have dimensions for each word 

in a “dictionary”. Tens of thousands of words, but only a 

few hundred appear in a given document. 



The Conjugate Gradient Algorithm


The conjugate gradient algorithm is a popular algorithm 

for solving linear systems. For this class, we need to know 

that CG is an iterative algorithm. The major operation is 

multiplying taking a matrix-vector product Av. A need not 

be supplied explicitly. 

CG is the method of choice when there is a way to multiply 

by A “quickly”. 



CG and Sparse Linear RLS


Remember, we are trying to solve 

(K + λI)c = y 

→ (XtX + λI)c = y. 

K is too big to write down. X is “formally” too big, so 

we can’t take its SVD, but it’s sparse. We can use CG, 

because we can form the matrix vector-product (XtX+λI)c 

quickly: 

(XtX + λI)c = Xt(Xc) + λc 

Cost per iteration: 2d̄ℓ, where d̄ is the average number of 

nonzero entries per data point. 



Square-Loss Classification


There is nothing to formally stop us for using the above al

gorithm for classification. By doing so, we are essentially 

treating our classification problem as a regression problem 

with y values of 1 or -1. 

How well do you think this will work?



